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ABSTRACT

Considerable research has been initiated to develop
countermeasures to mitigate injuries to persons,
particularly children, who are present or out-of-
position at the time of airbag deployment. This paper
reports on the development of a camera-based optical
occupant position sensor system that can be used
with multi-stage inflation technologies for
modulating airbag deployment.

INTRODUCTION

In motor vehicle crashes where an occupant has been
seriously or fatally injured from a deploying airbag, a
common finding has been that the occupant was in
close proximity to the airbag (or out-of-position) at
the time of deployment. The occupant may have
been out-of-position for a variety of reasons
including: driver loss of consciousness, pre-impact
braking, multiple impacts, rearward-facing child seat
installation, or late firing of the airbag after the
occupant has already been forced against the airbag
by the crash deceleration. Considerable research has
been initiated to develop new or enhanced injury
countermeasures to mitigate injuries to persons,
particularly children, who are out-of-position at the
time of airbag deployment. This paper reports on the
development of a low-cost occupant position sensor
system based on a single CMOS camera that can be
used in conjunction with dual-stage or multi-stage
inflation technologies for modulating airbag
deployment.

The occupant position sensor system uses a CMOS
camera in conjunction with pattern recognition
algorithms for the discrimination of out-of-position
occupants and rearward-facing child safety seats. A
single imager, located strategically within the
occupant compartment, is coupled with an infrared
LED that emits unfocused, wide-beam pulses toward
the passenger volume. These pulses, which reflect
off objects in the passenger seat and are captured by
the camera, contain information for classification and

location determination in approximately 10
milliseconds. The decision algorithm processes the
returned information using a uniquely trained neural
network system. The logic of the neural network
system was developed through extensive in-vehicle
training with thousands of realistic occupant size and
position scenarios. Although the optical occupant
position sensor can be used in conjunction with other
technologies, such as weight sensing, seatbelt
sensing, crash severity sensing, etc., it is a standalone
system meeting the requirements of FMVSS208.

In the early 1990’s, ATI developed a scanning laser
radar optical occupant sensor that had the capability
of creating a three dimensional image of the contents
of the passenger compartment. After proving
feasibility, this effort was temporarily put aside due
to the high cost of the system components. ATI then
developed an ultrasonic-based occupant sensor that
was commercialized and is now in production on
some Jaguar models. ATI has long believed that
optical systems would eventually become the
technology of choice when the cost of optical
components came down. This has now occurred and
for the past several years, ATI has been developing a
variety of optical occupant sensors. This paper will
report on one low-cost camera-based optical system
that is now ready for commercialization for high
volume production.1

ATI’s first camera-based optical occupant sensing
system was an adult zone-classification system that
detected the position of the adult passenger. Based
on the distance from the airbag, the passenger
compartment was divided into three zones, namely
safe-seating zone, at-risk zone, and keep-out zone.
This system was implemented in a vehicle under a
cooperative development program with NHTSA.
This proof-of-concept was developed to handle low-
light conditions only. It used three analog CMOS
cameras and three near-infrared LED clusters. It also
required a desktop computer with three image

1 For a more complete discussion of ATI occupant sensor
systems, see the following US Patents: 05653462,
05694320, 05822707, 05829782, 05835613, 05485000,
50488802, 05901978, 05943295, 06309139, 06078854,
06081757, 06088640, 06116639, 06134492, 06141432,
06168198, 06186537, 06234519, 06234520, 60242701,
06253134, 06254127, 60270116, 06279946, 60283503,
06324453, 06325414, 06330501, 06331014, RE37260,
06393133, 60397136, 06412813, 06422595, 06452870,
06442504, 06445988 as well as others published more
recently.



Chen 2

acquisition boards. The locations of the camera/LED
modules were: the A-pillar, the IP, and near the
overhead console. The processing speed of the
system was close to 50 fps giving it the capability of
tracking an occupant during pre-crash braking
situations – that is a dynamic system.

The second camera optical system was an occupant
classification system that separated adult occupants
from all other situations (i.e. child, child restraint and
empty seat). This system was implemented using the
same hardware as the first camera optical system. It
was also developed to handle low-light conditions
only. The results of this proof-of-concept were also
very promising.

Please note that both systems above were trained to
handle camera blockage situations, i.e. the systems
still functioned well even when two cameras were
blocked. It was decided to develop a single-camera
stand-alone system that is FMVSS208-compliant,
and price-competitive with weight-based systems but
with superior performance. Thus, a third camera
optical system (for occupant classification) was
developed. Unlike the earlier systems, this system
used one digital CMOS camera and two high-power
near-infrared LED’s. The camera/LED module was
installed near the overhead console and the image
data was processed using a laptop computer. This
system was developed to divide the occupancy state
into four classes: 1) adult; 2) child, booster seat and
forward facing child seat; 3) infant carrier and
rearward-facing child seat; 4) empty seat. This
system consisted of two subsystems: a nighttime
subsystem for handling low-light conditions, and a
daytime subsystem for handling ambient-light
conditions. Although the performance of this system
proved to be superior to the earlier systems it
exhibited some weakness mainly due to a non-ideal
aiming direction of the camera.

Later, a fourth camera optical system was
implemented using near production intent hardware
using, for example, an ECU (Electronic Control Unit)
to replace the laptop computer. In this system, the
remaining problems of earlier systems were
overcome. Finally, a fifth camera optical system was
implemented using the same hardware but in a
different vehicle. The uniqueness of this system is
that it is capable of continuously tracking the
occupant position. It is important to note that ATI’s
optical position-tracking system was implemented
with a single camera, and uses technologies other
than stereovision or triangulation.

This paper will not talk about all the systems above.
Instead, this paper will focus on the algorithms,
which represent the innovative heart of all these
systems. The following algorithms will be
introduced in this paper: 1) image preprocessing
techniques; 2) feature extraction algorithm; 3)
modular neural network architectures; 4) post neural
network processing technique. Data collection,
neural network training, and system performance
evaluation will also be discussed in this paper.

THE PROCESS

ATI believes that an occupant sensing system should
perform occupant classification as well as position
tracking since both are critical information for
making decision of airbag deployment in an auto
accident. Figure 1 shows the ATI occupant sensing
strategy. Occupant classification may be done
statically since the type of occupant does not change
frequently. Position tracking, however, has to be
done dynamically so that the occupant can be tracked
reliably during pre-crash braking situations. Position
tracking should provide continuous position
information so that the speed and the acceleration of
the occupant can be estimated and prediction can be
made even before the next actual measurement takes
place.

ATI has proved that occupant classification and
dynamic position tracking can be done with a
standalone optical system that uses a single camera.
The same image information is processed in a similar
fashion for both classification and dynamic position
tracking. As shown in Figure 2, the whole process
involves five steps: image acquisition, image
preprocessing, feature extraction, neural network
processing, and post-processing.

Image Acquisition

The imaging hardware mainly consists of a digital
CMOS camera, a high-power near-infrared LED, and
the LED control circuit.

Three types of imaging sensors were tested and many
more were investigated. The following key
characteristics of the sensors were identified:
� Digital CMOS sensor (so no additional

digitization hardware required)
� Spatial resolution 320×240 or 256×256 is

sufficient
� Medium high dynamic range (i.e. 70-100 dB)

with good image contrast
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� Automotive temperature requirement (i.e. -40°C
to 85°C)
� Customizable and hardware-implemented

automatic exposure/gain control
� Global shutter (that simplifies the

synchronization between LED’s and camera)

Various near-infrared LED’s were also investigated,
which include the high-power LED’s with special
packaging for heat dissipation, and small surface-
mount LED’s.

Image Preprocessing

A number of image preprocessing filters have been
implemented, which include noise reduction, contrast
enhancement, edge detection, image down sampling
and cropping, etc. Here is a list of the preprocessing
filters that have been implemented so far:
� 3×3 Gaussian filter (for noise removal)
� 3×3 Laplacian filter (for edge detection)
� Kirsch filter (for detecting edges with different

orientations)
� Histogram-based contrast enhancement filter
� Wavelet-based enhancement filter (including 54

wavelet functions from 7 families)
� Morphological filter (including dilation, erosion,

close, open, tophat, h-dome)
� Binarization filter
� Image down-size filter (for down-sampling and

cropping)

� Generic in-frame filter (i.e. a customizable
window-based spatial filter)
� Generic cross-frame filter (i.e. a customizable

window-based temporal filter)
� Pixel transfer filter (suitable for eliminating

regions with irregular shapes)

Under daylight conditions, the image contains
unwanted contents because the background is
illuminated by the sunlight. For example, the
movement of the driver, other passengers in the
backseat, and the scenes outside the passenger
window can interfere if they are visible in the image.
Usually these unwanted contents cannot be
completely eliminated by adjusting the camera
position, but they can be removed by image
preprocessing.

Feature Extraction

The image size in the current classification system is
320×240, i.e. 76,800 pixels, which is too much for
the neural network to handle. In order to reduce the
amount of the data while retaining most of the
important information, a good feature extraction
algorithm is needed. ATI’s block-based multi-scale
feature extraction algorithm is able to compresses the
data to only a few hundred floating-point numbers
while retaining most of the important information.
Figure 3 shows an example of the image and its
corresponding feature vector.

Static
Occupant

Classification

Empty
Seat

Infant Carrier or
Rearward-Facing

Child Seat

Child or
Forward-Facing
Child Restraint

Adult
Passenger

Dynamic
Position
Tracking

Dynamic
Position
Tracking

Recommended Action
suppress airbag

Recommended Action
suppress or depower
airbag based on
distance and crash
severity

Recommended Action
suppress, depower, or
fullpower airbag based
on distance and crash
severity

Image
Acquisition

Image Pre-
processing

Feature
Extraction

Neural Network
Processing

Post-processing

Figure 1. ATI occupant sensing strategy. Figure 2. Processing block diagram.
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Figure 3. Example of image feature extraction.

Table 1. Factors that may affect the image data.
Vehicle Configuration Occupant Child Restraint Lighting Condition
� Seat track position
� Seatback recline

position
� Other interior fixture

configurations (such
console, glove box,
seatbelt, etc.)

� Height
� Weight
� Clothing
� Hair and facial

hair
� Skin tone
� Seating position
� Personal objects

� NHTSA
FMVSS208
approved 11 rear-
facing child
restraints, 7
forward-facing
child restraints, and
4 booster seats.

� Nighttime condition
� Sunlight at different time

of the day and/or different
vehicle orientation

� Dome light
� Door light
� Headlight from other

vehicle

Neural Network Processing

Once an image is converted into a feature vector, the
classification decision can be made using any pattern
recognition technique. Literature studies show that
the neural network technique that simulates the
human brain is particularly effective in pattern
recognition applications. In our application,
however, the patterns of the feature vectors are
extremely complex. Table 1 shows a list of things
that may affect the image data and therefore the
feature vector. Considering all the combinations,
there could be an infinite number of patterns. For a
complex system like this, it is impossible to train a
single neural network to handle all the possible
scenarios. Studies show that, by dividing a large task
into many small subtasks, a modular approach is
extremely effective with complex systems.

Figure 4 shows some of the modular neural network
architectures that have been tested. Particularly, the

architecture in Figure 4(3) has two unique
characteristics:

1) Since the outputs of all the six neural networks
can be considered as binary, there are 64
possible output combinations, but only 32 of
them are valid. For an untrained data pattern, it
is more likely to have an invalid output
combination than a misclassification. Therefore
this architecture provides a way to identify
“unseen” patterns.

2) Since a positive classification requires
consistent outputs from three neural networks,
the chance of misclassification is very small.
Misclassification rate is reduced by replacing
the weak classifications with “undetermined”
states.

Post-Processing

The simplest way to utilize the temporal information
is to use the fact that the data pattern always changes
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continuously. And because the input to the neural
networks is continuous, the output from the neural
networks should also be continuous. Based on this
idea, post-processing filters can be used to eliminate
the random fluctuations in the neural network output.
Here is a list of the post-processing filters that have
been implemented so far:
� Generic digital filter
� Kalman filter
� Median filter
� Post-decision filter based on “age” and “locality”

Besides filtering, additional knowledge can be used
to remove some of the undesired changes in the
neural network output. For example, it is impossible
to change from an adult passenger to a child restraint
without going through an empty-seat state, and vice
versa. Based on this idea, a decision-locking
mechanism for eliminating undesired decision
changes was implemented. Once the system
stabilizes, any direct change between two non-empty-
seat classes is virtually prohibited.

Empty-Seat

Infant Neural Network

Empty
Seat?

Yes

No

Feature Vector

Empty-Seat Neural
Network

Infant Carrier or
Rearward Facing

Child Seat

Adult Neural Network

Infant?

Yes

No

Adult
Passenger

Adult?

Yes

No

Child or Forward-
Facing Child

Restraint
Empty-Seat

Infant Neural Network

Empty
Seat?

Yes

No

Feature Vector

Empty-Seat Neural
Network

Infant Carrier or
Rearward Facing

Child Seat

Adult Neural Network

Infant?

Yes No

Adult
Passenger

Adult?

Yes No

Child or Forward-
Facing Child

Restraint
Undetermined

(1) Architecture #1. (2) Architecture #2.

Neural
Network "AB"

Neural
Network "AC"

Neural
Network "AD"

Neural
Network "BC"

Neural
Network "BD"

Neural
Network "CD"

C D C D DA A A B B C
BA CA DA CB DB DC

B

1=Yes
0=No

1=Yes
0=No

1=Yes
0=No

1=Yes
0=No

1-0-0-0:
0-1-0-0:
0-0-1-0:
0-0-0-1:

otherwise:

Class A (empty-seat)
Class B (adult passenger)
Class C (child or forward-facing child restraint)
Class D (infant carrier or rearward-facing child seat)
undetermined

AND AND AND AND

Feature Vector

(3) Architecture #3.

Figure 4. Various modular neural network architectures were investigated.
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SYSTEM TRAINING

Currently ATI implements occupant classification as
two systems for handling ambient light (or daytime)
conditions and low-light (or nighttime) conditions
respectively. Under low-light conditions, the center
of the view is illuminated by near infrared LED’s.
The background (including the floor, the backseats,
and the scene outside the window) is virtually
invisible, which makes classification somewhat
easier. Classification is more difficult under ambient
light condition because the background is illuminated
by the sunlight, and sometimes the bright sunlight
projects sharp shadows onto the seat, which creates
false patterns in the feature vectors.

ATI’s optical position-tracking system was also
implemented with a single camera. The difficulty
with the position-tracking system is to obtain the
continuous distance information for training. An
ultrasonic distance-tracking device was developed for
this purpose. This device contains a sender (installed
near the airbag) and a receiver (attached to the
moving occupant), and is able to send continuous
distance measurements to a PC via serial port.

A Classification System for Nighttime Conditions

The data collection on the nighttime classification
system was done inside a building where the
illumination from outside the vehicle was filtered out
using a near-infrared filter. The data set consists of
about 725,000 images, and the data distribution is
shown in Table 2. The 3-network architecture shown
in Figure 4(2) was used, and the performance of the
whole modular system is shown in Table 3.

A Classification System for Daylight Conditions

The data collection on the daylight classification
system is more complex because different sunlight
conditions have to be considered. A systematic data
collection matrix was made to cover both sunny
conditions and overcast conditions. For sunny
conditions, a timely schedule was created to cover all
sunlight conditions corresponding to different time of
the day. The data set consists of about 860,000
images, and the data distribution is shown in Table 4.
Both the 3-network architecture in Figure 4(2) and
the 6-network architecture in Figure 4(3) were used.
The performance of the 3-network architecture is
shown in Table 5, while the performance of the 6-
network architecture is in Table 6. The results show
that the 6-network architecture gives higher success
rates.

A Position-Tracking System for Nighttime
Conditions

The occupants were wearing an ultrasonic distance-
tracking device during the data collection on the
position-tracking system. After learning from the
images associated with accurate distances, the system
is able to track the occupant continuously as the
occupant moves inside the passenger compartment.
Figure 5 demonstrates the tracking capability, where
the red lines indicate the readings from the ultrasonic
distance-tracking device and the blue lines are
outputs from the neural networks. The spikes in the
red lines were due to the fact that the ultrasonic
distance-tracking device has limited field of view and
it loses signal when the occupant turns their head
away from the receiver.

Table 2. Distribution of the database of nighttime conditions.

Adult Child and FFCR
(Forward-Facing Child Restraint)

Infant Carrier and RFCS
(Rearward-Facing Child Seat) Empty Seat

38.71% 25.14% 27.27% 8.88%

Table 3. Performance of the classification system for nighttime conditions.
Classified As

Adult Child & FFCR Infant Carrier & RFCS Empty Seat Undetermined
Adult 97.30% 1.83% 0.22% 0.01% 0.64%

Child & FFCR 0.92% 98.44% 0.62% 0.02% 0%
Infant Carrier & RFCS 0.09% 0.62% 98.60% 0% 0.69%

T
arget

C
lass

Empty Seat 0% 0% 0% 100% 0%
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Table 4. Distribution of the database of daylight conditions.

Adult Child and FFCR
(Forward-Facing Child Restraint)

Infant Carrier and RFCS
(Rearward-Facing Child Seat) Empty Seat

47.72% 11.98% 32.09% 8.21%

Table 5. Performance of the classification system for daylight conditions (3-network architecture).
Classified As

Adult Child & FFCR Infant Carrier & RFCS Empty Seat Undetermined
Adult 97.34% 1.06% 0.32% 0.35% 0.93%

Child & FFCR 0.88% 98.72% 0.37% 0.03% 0%
Infant Carrier & RFCS 0.33% 1.05% 97.69% 0.04% 0.89%

T
arget

C
lass

Empty Seat 0.02% 0.10% 0.01% 99.87% 0%

Table 6. Performance of the classification system for daylight conditions (6-network architecture).
Classified As

Adult Child & FFCR Infant Carrier & RFCS Empty Seat Undetermined
Adult 98.45% 0.48% 0.82% 0.06% 0.19%

Child & FFCR 0.15% 99.63% 0.15% 0.01% 0.06%
Infant Carrier & RFCS 0.70% 0.19% 98.97% 0% 0.14%

T
arget

C
lass

Empty Seat 0.03% 0% 0% 99.94% 0.03%
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Figure 5. The position-tracking system tracks the distance between the moving occupant and the airbag.
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Figure 6. The accuracy of the position-tracking system.

The accuracy of the position-tracking system is
shown in Figure 6. One can see that the accuracy
starts to decrease when the distance is below 5 inches
or above 32 inches, which was due to the limitation
of the ultrasonic distance-tracking device. Please
note that this system was trained with a rather small
database that contains only 36,000 images.

CONCLUSIONS AND DISCUSSIONS

In this paper, the technology of a standalone optical
occupant sensing system using a single camera was
introduced. During the development of the system,
new image preprocessing techniques were
implemented, the feature extraction algorithm was
developed, new neural network architectures and new
post-processing techniques were explored, data
collection techniques were improved, new modular
neural networks were trained and evaluated, many

software tools were created or improved, and also
problems present in data collection and hardware
installation were identified.

It is important to note that the classification/position-
tracking accuracies reported here are based on single
images and when the post-processing steps are
included the overall system accuracy approaches
100%. This is a substantial improvement over
previous systems even though it is based on a single
camera. Some additional improvement can be
obtained through the addition of a second camera.
Nevertheless, the system as described herein is cost-
competitive with a weight-only system and
substantially more accurate. This system is now
ready for commercialization where the prototype
system described herein is made ready for high
volume serial production.
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